CONVECTIVE DIFFUSION IN AN INFINITE BAND

A, T. Chub UDC 532,72

A solution of the mixed boundary-value problem in the form of a generalized function repre-
sented by a contour integral is obtained for the stationary equation of convective diffusion.

We simulate the cathode region of a chemotron converter by an infinite band P{lal =< 1, 18] < «},
where o and 8 are real dimensionless variables. We assume that an electrolyte flows along the band at a
constant velocity v from +% to —« with the velocity vector parallel to the axis of the band. The boundary
of the half-band lal =< 1, 8 >0, i.e., therays o= =1, 8 >0, is assumed to be made of an insulating, chemi-
cally inert material and the rays o= +1, B8 < 0 act as a cathode which is indifferent with respect to the
solution used in the instrument.

For these conditions, we shall formulate the problem of determining the concentration distribution
Cla, B) of the reducible component of the electrolyte in the cathode region described above for a steady-
state process. In this case, calculation of reagent concentration reduces to integration of the equation for
stationary convective diffusion, which can be written in dimensionless form in the following manner:
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where U = C(x, 8)/Cy; C, is the concentration of the reducible component of the electrolyte at the entrance

to the cathode channel, i.e., Cy = éim Cla, 8). We also make the reasonable assumption [2] that the re-
>t

agent concentration is zero at the exit from the cathode channel, i.e., that 1im C(x, 8) = 0. These assump-
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tions make it possible to establish the conditions which the function Ula, B) must satisfy at infinity:
im U(x, B) =1, and lim U (&, B) = 0.
Boston B>—co

One can now formulate the problem more precisely. It is necessary to solve Eq. (1) under the fol-

lowing boundary conditions: o

=0, p >0, (2)
0% Joee e
U= 1, B)=0, p<0, (3
lim Ufe, By=1, o<1, 4
Bt
rlim Ufa, B)=10, jal<<l. (5)

We shall seek a solution of this problem in the form of the difference
U, By =1 —S(a B),

where S(x, B8) is a solution of Eq. (1) satisfying the boundary conditions

93 —0, B>0, (6)

Ja =1 -

S(x1, =1 p<O, (7)
lim S(a, p) =0, |a]<<], (8)
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B1im S, B =1, |aj<1, 9
It is easy to verify that the function
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is an even solution of Eq. (1) with respect to the variable o, In Eq. (10), A(w) is an ag yet arbitrary func-
tion of the complex variable w, which is analytic on the imaginary axis of the w plane, and for the root
vw?—y?/4 that branch is chosen which, for real w such that w?—y?%/4 = 0, gives the arithmetic value of the
root,

We require that the function Q(e, 8) satisfy conditions (6) and (7)., Accordingly, this leads to the two
integral equations
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We introduce the notation

K () :A(m)l/ wz——?— sinl/ mz—sz ,
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Equations (11) and (12) then take the form
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do =0, B0, (13)
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do =1, Pp<0. (14)

We introduce the function

n

where the ay, are those positive roots of the function sinv wi—yg/él which are greater than the root w =v/2,
and the by are the positive roots of the function cosw/wz—‘yz/ll.

Following Danilevskii [1], one can show that the product (15) converges uniformly and absolutely
everywhere in the region largw! = 6, where 6 is a fixed positive number as small as desired (6 < 7/2).

Investigating the behavior of Il(w) at infinity, we find that
|

II (w) ~ ;'}’5 . (16)

From the method by which the meromorphic function I (w) was constructed and from the asymptotic
behavior (16), it follows that this function is regular in the region |largw| = 6 and goes to zero uniformly
in this region when w — o,

We take the function Bll (w), where B = const, as K(w). Such a choice is possible since the arbitrary
function A(w) appears in K(w). Equation (13) can now be written as
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| BI(@e do =0, B>0. (17)
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Since H{w) is regular in the region Rew =< 0 and obviously meets the conditions of the Jordan lemma in this

region, the condition (13) is satisfied by such a choice of K(w).

From the properties of H(w) noted, it follows that in the region Rew = 0 the function
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has a singularity at w =vy/2 which is a simple pole, It is easy to see that
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Consequently, if one sets
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then for 8 < 0, because P(w) satisfies the conditions for the Jordan lemma in the region Rew = 0,
+io v
A — 28
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i. e., the condition (14) is also satisfied,

Thus the function Q(«, B) defined by the expression
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is a solution of Eq. (1) which satisfies conditions (6) and (7).
We find ﬁlim Q(a, B) for tal < 1. Equation (18) can be written in the following manner:
TEe Fiw tim (o= L8
I : 1 o~ 28 2
Qe B) = — —— j [ o® o) —— b e( ) PR e o (19)
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where
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The function inside the integral sign in the first integral on the right side of Eq. (19) is obviously a regular
function everywhere in the right half-plane Rew = 0, and the integral itself converges uniformly with re-
spect to B on the line Rew = 0. In such a case, one can assert on the basis of the generalized Lebesgue
—Riemann lemma that

i )
r — 5|8
lim \ [»—1—-— ¢ (0, a) — ——1————le(m 2 ) do =0,
B>t oL — v @ —— _y_
e 2 2
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Thus
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Consequently,

lim Q(e, B) =0, a lim Q(a, B) =1
Brd-ow fo—o

Thus the function Q(a, B) defined by Eq. (18) satisfies Eq. (1) and conditions (6)-(9), i.e.,
Qe By =S, ).

On this basis, one can agsert that
+ix TTTTE
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and the problem is completely solved.

U(OL, ﬁ):1+

It is of interest to investigate the concentration distribution for small positive § when o = +1,

(20)

Let

II{—w) be a function constructed analogously to the function Il{(w) with respect to those negative roots of the
functions sinv w 2—-')/2/ 4 and cosvw 2—--3/2/4 which lie to the left of the line w = —y/2., As is easily seen, the

functions Ii(w) and TI(—w) satisfy the relation
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Therefore,
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Alternatively, considering that we are looking at positive 8,
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U, B =1+ 2:”. (ﬁ n(l) : n(_m)(mz_»"i) SR
n

1295



Here, T is a closed contour which surrounds the point w = —y /2, which is traversed in the positive direc-
tion, and is so small that in the finite region of the w plane bounded by it there are no poles of the function
inside the integral sign other than w = —y/2, and the symbol (—y/2-) indicates bypassing the point w = —y/2
on the left.

One can show that the integral along the contour I'" equals—(e~Y8 /m%(y/ 2)). Therefore,
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Setting u8 = v (8 > 0) in the last infegral, we have
v, p=1—— o C (2 =

m(X ) i) g Jl_) U(L+ ’)H(L+L)

b) &) U ) T

In the last equation, C is a contour consisting of the axis Rev = 0 with the exception of the segment (~ir,
+ir), where r is a fixed positive number, and a semicircle of radius r with its center at the point v = 0

going around the origin on the left. Considering that |v| = r on the contour C and the asymptotic relation
(16), we can write for B8 close to zero

" )

If L is a path which goes around the origin without intersecting the contour C and passes along the positive

semiaxis Imv = 0, then
o . .
‘g‘ b _ ~5l L (—— —1—) = —4y'm
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Consequently,
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NOTATION
Cla, B) is the concentration of diffusing substance;
Cy is the concentration of reagent at the entrance to the cathode channel of the transformer;
D is the diffusivity;
v is the convection rate;
v is the modulus of the convection rate;
h is the width of a band, a constant having the dimensions of length;
v =vh/D is a positive dimensionless constant.
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