A. T. Chub UDC 532.72

A solution of the mixed boundary-value problem in the form of a generalized function represented by a contour integral is obtained for the stationary equation of convective diffusion.

We simulate the cathode region of a chemotron converter by an infinite band $P\{|\alpha| \le 1, |\beta| < \infty\}$, where α and β are real dimensionless variables. We assume that an electrolyte flows along the band at a constant velocity v from $+\infty$ to $-\infty$ with the velocity vector parallel to the axis of the band. The boundary of the half-band $|\alpha| \le 1$, $\beta > 0$, i.e., the rays $\alpha = \pm 1$, $\beta > 0$, is assumed to be made of an insulating, chemically inert material and the rays $\alpha = \pm 1$, $\beta < 0$ act as a cathode which is indifferent with respect to the solution used in the instrument.

For these conditions, we shall formulate the problem of determining the concentration distribution $C(\alpha, \beta)$ of the reducible component of the electrolyte in the cathode region described above for a steady-state process. In this case, calculation of reagent concentration reduces to integration of the equation for stationary convective diffusion, which can be written in dimensionless form in the following manner:

$$-\gamma \frac{\partial U}{\partial \beta} = \frac{\partial^2 U}{\partial \alpha^2} + \frac{\partial^2 U}{\partial \beta^2} , \qquad (1)$$

where $U=C(\alpha,\beta)/C_0$; C_0 is the concentration of the reducible component of the electrolyte at the entrance to the cathode channel, i.e., $C_0=\lim_{\beta\to+\infty}C(\alpha,\beta)$. We also make the reasonable assumption [2] that the re-

agent concentration is zero at the exit from the cathode channel, i.e., that $\lim_{\beta \to -\infty} C(\alpha, \beta) = 0$. These assump-

tions make it possible to establish the conditions which the function $U(\alpha, \beta)$ must satisfy at infinity:

$$\lim_{\beta \to +\infty} U(\alpha, \beta) = 1, \text{ and } \lim_{\beta \to -\infty} U(\alpha, \beta) = 0.$$

One can now formulate the problem more precisely. It is necessary to solve Eq. (1) under the following boundary conditions:

$$\frac{\partial U}{\partial \alpha}\Big|_{\alpha=\pm 1} = 0, \ \beta > 0,$$
 (2)

$$U(\pm 1, \beta) = 0, \beta < 0, \tag{3}$$

$$\lim_{\beta \to +\infty} U(\alpha, \beta) = 1, \quad |\alpha| < 1, \tag{4}$$

$$\lim_{\beta \to -\infty} U(\alpha, \beta) = 0, \quad |\alpha| < 1. \tag{5}$$

We shall seek a solution of this problem in the form of the difference

$$U(\alpha, \beta) = 1 - S(\alpha, \beta),$$

where $S(\alpha, \beta)$ is a solution of Eq. (1) satisfying the boundary conditions

$$\frac{\partial S}{\partial \alpha}\Big|_{\alpha=\pm 1}=0, \quad \beta>0, \tag{6}$$

$$S(\pm 1, \beta) = 1, \beta < 0,$$
 (7)

$$\lim_{\beta \to +\infty} S(\alpha, \beta) = 0, \quad |\alpha| < 1, \tag{8}$$

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 21, No. 4, pp. 695-701, October, 1971. Original article submitted July 2, 1970.

• 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

$$\lim_{\beta \to -\infty} S(\alpha, \beta) = 1, \quad |\alpha| < 1. \tag{9}$$

It is easy to verify that the function

$$Q(\alpha, \beta) = \int_{-i\infty}^{+i\infty} A(\omega) e^{\left(\omega - \frac{\gamma}{2}\right)\beta} \cos \sqrt{\omega^2 - \frac{\gamma^2}{4}} \alpha d\omega$$
 (10)

is an even solution of Eq. (1) with respect to the variable α . In Eq. (10), $A(\omega)$ is an as yet arbitrary function of the complex variable ω , which is analytic on the imaginary axis of the ω plane, and for the root $\sqrt{\omega^2 - \gamma^2/4}$ that branch is chosen which, for real ω such that $\omega^2 - \gamma^2/4 \ge 0$, gives the arithmetic value of the root.

We require that the function $Q(\alpha, \beta)$ satisfy conditions (6) and (7). Accordingly, this leads to the two integral equations

$$\int_{-i\infty}^{+i\infty} A(\omega) \sqrt{\omega^2 - \frac{\gamma^2}{4}} \sin \sqrt{\omega^2 - \frac{\gamma^2}{4}} e^{\left(\omega - \frac{\gamma}{2}\right)\beta} d\omega = 0, \quad \beta > 0,$$
(11)

$$\int_{-i\infty}^{+i\infty} A(\omega) \cos \sqrt{\omega^2 - \frac{\gamma^2}{4}} e^{\left(\omega - \frac{\gamma}{2}\right)\beta} d\omega = 1, \quad \beta < 0.$$
 (12)

We introduce the notation

$$K(\omega) = A(\omega) \sqrt{\omega^2 - \frac{\gamma^2}{4}} \sin \sqrt{\omega^2 - \frac{\gamma^2}{4}}$$
,

$$\psi(\omega) = -\frac{K(\omega)\cos\sqrt{\omega^2 - \frac{\gamma^2}{4}}}{\sqrt{\omega^2 - \frac{\gamma^2}{4}}} \sin\sqrt{\omega^2 - \frac{\gamma^2}{4}}.$$

Equations (11) and (12) then take the form

$$\int_{-t\infty}^{+t\infty} K(\omega) e^{\left(\omega - \frac{\gamma}{2}\right)\beta} d\omega = 0, \quad \beta > 0,$$
(13)

$$\int_{-i\infty}^{+i\infty} \psi(\omega) e^{\left(\omega - \frac{\gamma}{2}\right)\beta} d\omega = 1, \quad \beta < 0.$$
 (14)

We introduce the function

$$\Pi(\omega) = \prod_{n=1}^{\infty} \frac{\left(1 - \frac{\omega}{a_n}\right)}{\left(1 - \frac{\omega}{b_n}\right)},\tag{15}$$

where the a_n are those positive roots of the function $\sin\sqrt{\omega^2-\gamma^2/4}$ which are greater than the root $\omega=\gamma/2$, and the b_n are the positive roots of the function $\cos\sqrt{\omega^2-\gamma^2/4}$.

Following Danilevskii [1], one can show that the product (15) converges uniformly and absolutely everywhere in the region $|\arg \omega| \ge \delta$, where δ is a fixed positive number as small as desired ($\delta < \pi/2$).

Investigating the behavior of $\Pi(\omega)$ at infinity, we find that

$$\Pi(\omega) \sim \frac{1}{i \cdot \sqrt{\omega}}. \tag{16}$$

From the method by which the meromorphic function $\Pi(\omega)$ was constructed and from the asymptotic behavior (16), it follows that this function is regular in the region $|\arg \omega| \ge \delta$ and goes to zero uniformly in this region when $\omega \to \infty$.

We take the function $B\Pi(\omega)$, where B = const, as $K(\omega)$. Such a choice is possible since the arbitrary function $A(\omega)$ appears in $K(\omega)$. Equation (13) can now be written as

$$\int_{-l\infty}^{+l\infty} B\Pi(\omega) e^{\left(\omega - \frac{\gamma}{2}\right)\beta} d\omega = 0, \quad \beta > 0.$$
 (17)

Since $\Pi(\omega)$ is regular in the region $\text{Re}\,\omega \leq 0$ and obviously meets the conditions of the Jordan lemma in this region, the condition (13) is satisfied by such a choice of $K(\omega)$.

From the properties of $\Pi(\omega)$ noted, it follows that in the region $\operatorname{Re}\omega\geq 0$ the function

$$\psi\left(\omega\right) = \frac{B\Pi\left(\omega\right)\cos\sqrt{\frac{\omega^{2}-\frac{\gamma^{2}}{4}}{4}}}{\sqrt{\frac{\omega^{2}-\frac{\gamma^{2}}{4}}{4}}\sin\sqrt{\frac{\omega^{2}-\frac{\gamma^{2}}{4}}{4}}}$$

has a singularity at $\omega = \gamma/2$ which is a simple pole. It is easy to see that

$$\operatorname{res}\left[\psi\left(\omega\right)e^{-\frac{\gamma\beta}{2}}\,,\,\,\frac{\gamma}{2}\,\right] = \frac{B\Pi\left(\frac{\gamma}{2}\right)e^{-\frac{\gamma\beta}{2}}}{\gamma}$$

But then

$$\operatorname{res}\left[\psi\left(\omega\right)e^{\left(\omega-\frac{\gamma}{2}\right)\beta}\,,\quad \frac{\gamma}{2}\,\right]=\frac{B\Pi\left(\frac{\gamma}{2}\right)}{\gamma}\;.$$

Consequently, if one sets

$$B = -\frac{1}{2\pi i} \cdot \frac{\gamma}{\Pi\left(\frac{\gamma}{2}\right)} ,$$

then for $\beta < 0$, because $\psi(\omega)$ satisfies the conditions for the Jordan lemma in the region $\text{Re }\omega \geq 0$,

$$\int_{-i\infty}^{+i\infty} \psi(\omega) e^{\left(\omega - \frac{\gamma}{2}\right)\beta} d\omega = 1,$$

i.e., the condition (14) is also satisfied.

Thus the function $Q(\alpha, \beta)$ defined by the expression

$$Q(\alpha, \beta) = -\frac{\gamma}{\Pi\left(\frac{\gamma}{2}\right)} \cdot \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} \frac{\Pi(\omega)\cos\sqrt{\omega^2 - \frac{\gamma^2}{4}} \alpha}{\sqrt{\omega^2 - \frac{\gamma^2}{4}} \sin\sqrt{\omega^2 - \frac{\gamma^2}{4}}} e^{(\omega - \frac{\gamma}{2})\beta} d\omega, \tag{18}$$

is a solution of Eq. (1) which satisfies conditions (6) and (7)

We find $\lim_{\beta \to \pm \infty} Q(\alpha, \beta)$ for $|\alpha| < 1$. Equation (18) can be written in the following manner:

$$Q(\alpha, \beta) = -\frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} \left[\frac{1}{\omega - \frac{\gamma}{2}} \varphi(\omega, \alpha) - \frac{1}{\omega - \frac{\gamma}{2}} \right] e^{\left(\omega - \frac{\gamma}{2}\right)\beta} d\omega - \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} \frac{e^{\left(\omega - \frac{\gamma}{2}\right)\beta}}{\omega - \frac{\gamma}{2}} d\omega, \tag{19}$$

where

$$\phi\left(\omega,\;\alpha\right) = \frac{\gamma\Pi\left(\omega\right)}{\Pi\left(\frac{\gamma}{2}\right)} \cdot \frac{\sqrt{\frac{\omega^{2} - \frac{\gamma^{2}}{4}\cos\sqrt{\frac{\omega^{2} - \frac{\gamma^{2}}{4}\alpha}}}{\left(\omega + \frac{\gamma}{2}\right)\sin\sqrt{\frac{\omega^{2} - \frac{\gamma^{2}}{4}\alpha}}}}{\left(\omega + \frac{\gamma}{2}\right)\sin\sqrt{\frac{\omega^{2} - \frac{\gamma^{2}}{4}\alpha}}}.$$

The function inside the integral sign in the first integral on the right side of Eq. (19) is obviously a regular function everywhere in the right half-plane $\text{Re}\,\omega \geq 0$, and the integral itself converges uniformly with respect to β on the line $\text{Re}\,\omega = 0$. In such a case, one can assert on the basis of the generalized Lebesgue -Riemann lemma that

$$\lim_{\beta \to \pm \infty} \int_{-i\infty}^{+i\infty} \left[\frac{1}{\omega - \frac{\gamma}{2}} \varphi(\omega, \alpha) - \frac{1}{\omega - \frac{\gamma}{2}} \right] e^{\left(\omega - \frac{\gamma}{2}\right)\beta} d\omega = 0.$$

Thus

 $\lim_{\beta \to \pm \infty} Q(\alpha, \beta) = -\frac{1}{2\pi i} \lim_{\beta \to \pm \infty} \int_{-i\infty}^{+i\infty} \frac{e^{\left(\omega - \frac{\gamma}{2}\right)\beta}}{\omega - \frac{\gamma}{2}} d\omega.$

But

$$\lim_{\beta \to +\infty} \int_{-i\infty}^{+i\infty} \frac{e^{\left(\omega - \frac{\gamma}{2}\right)\beta}}{\omega - \frac{\gamma}{2}} d\omega = 0,$$

$$\lim_{\beta \to -\infty} \int_{-i\infty}^{+i\infty} \frac{e^{\left(\omega - \frac{\gamma}{2}\right)\beta}}{\omega - \frac{\gamma}{2}} d\omega = -2\pi i.$$

Consequently,

$$\lim_{\beta \to +\infty} Q(\alpha, \beta) = 0, \quad \text{a } \lim_{\beta \to -\infty} Q(\alpha, \beta) = 1.$$

Thus the function $Q(\alpha, \beta)$ defined by Eq. (18) satisfies Eq. (1) and conditions (6)-(9), i.e., $Q(\alpha, \beta) \equiv S(\alpha, \beta)$.

On this basis, one can assert that

$$U(\alpha, \beta) = 1 + \frac{1}{2\pi i} \cdot \frac{\gamma}{\Pi\left(\frac{\gamma}{2}\right)} \int_{-i\infty}^{+i\infty} \frac{\Pi(\omega)\cos\sqrt{\omega^2 - \frac{\gamma^2}{4}}\alpha}{\sqrt{\omega^2 - \frac{\gamma^2}{4}}\sin\sqrt{\omega^2 - \frac{\gamma^2}{4}}} e^{\left(\omega - \frac{\gamma}{2}\right)\beta} d\omega$$
 (20)

and the problem is completely solved.

It is of interest to investigate the concentration distribution for small positive β when $\alpha=\pm 1$. Let $\Pi(-\omega)$ be a function constructed analogously to the function $\Pi(\omega)$ with respect to those negative roots of the functions $\sin\sqrt{\omega^2-\gamma^2/4}$ and $\cos\sqrt{\omega^2-\gamma^2/4}$ which lie to the left of the line $\omega=-\gamma/2$. As is easily seen, the functions $\Pi(\omega)$ and $\Pi(-\omega)$ satisfy the relation

$$\Pi\left(\omega\right)\Pi\left(-\omega\right) = \frac{\sin\sqrt{\omega^{2} - \frac{\gamma^{2}}{4}}}{\sqrt{\omega^{2} - \frac{\gamma^{2}}{4}\cos\sqrt{\omega^{2} - \frac{\gamma^{2}}{4}}}}.$$

Hence

$$\frac{\Pi\left(\omega\right)\sqrt{\frac{\omega^{2}-\frac{\gamma^{2}}{4}\cos\sqrt{\frac{\omega^{2}-\frac{\gamma^{2}}{4}}}}{\sin\sqrt{\frac{\omega^{2}-\frac{\gamma^{2}}{4}}}}=\frac{1}{\Pi\left(-\omega\right)}.$$

Therefore,

$$U(1, \beta) = 1 + \frac{1}{2\pi i} \cdot \frac{\gamma}{\Pi\left(\frac{\gamma}{2}\right)} \int_{-i\infty}^{+i\infty} \frac{1}{\omega^2 - \frac{\gamma^2}{4}} \cdot \frac{e^{\left(\omega - \frac{\gamma}{2}\right)\beta}}{\Pi(-\omega)} d\omega.$$

Alternatively, considering that we are looking at positive β ,

$$U(1, \beta) = 1 + \frac{1}{2\pi i} \oint_{\Gamma^{+}} \frac{\gamma}{\Pi\left(\frac{\gamma}{2}\right)} \cdot \frac{1}{\Pi(-\omega)\left(\omega^{2} - \frac{\gamma^{2}}{4}\right)} e^{\left(\omega - \frac{\gamma}{2}\right)\beta} d\omega$$
$$+ \frac{1}{2\pi i} \int_{-\frac{\gamma}{2} - i\infty} \frac{\gamma}{\Pi\left(\frac{\gamma}{2}\right)} \cdot \frac{1}{\Pi(-\omega)\left(\omega^{2} - \frac{\gamma^{2}}{4}\right)} e^{\left(\omega - \frac{\gamma}{2}\right)\beta} d\omega.$$

Here, Γ^+ is a closed contour which surrounds the point $\omega=-\gamma/2$, which is traversed in the positive direction, and is so small that in the finite region of the ω plane bounded by it there are no poles of the function inside the integral sign other than $\omega=-\gamma/2$, and the symbol $(-\gamma/2-)$ indicates bypassing the point $\omega=-\gamma/2$ on the left.

One can show that the integral along the contour Γ^+ equals $-(e^{-\gamma\beta}/\Pi^2(\gamma/2))$. Therefore,

$$U(1, \beta) = 1 - \frac{e^{-\gamma\beta}}{\Pi^{2}\left(\frac{\gamma}{2}\right)} + \frac{1}{2\pi i} \int_{-i\infty}^{(0-)+i\infty} \frac{\gamma}{\Pi\left(\frac{\gamma}{2}\right)} \frac{e^{-\gamma\beta}e^{i\beta}du}{u(u-\gamma)\Pi\left[-\left(u-\frac{\gamma}{2}\right)\right]}$$

$$= 1 - \frac{e^{-\gamma\beta}}{\Pi^{2}\left(\frac{\gamma}{2}\right)} + \frac{e^{-\gamma\beta}}{2\pi i} \int_{-i\infty}^{(0-)+i\infty} \frac{\gamma}{\Pi\left(\frac{\gamma}{2}\right)} \cdot \frac{e^{-u\beta}du}{u(u+\gamma)\Pi\left(u+\frac{\gamma}{2}\right)}.$$

Setting $u\beta = v (\beta > 0)$ in the last integral, we have

$$U\left(1,\;\beta\right)=1-\frac{e^{-\gamma\beta}}{\Pi^{2}\left(\frac{\gamma}{2}\right)}-\frac{e^{-\gamma\beta}}{2\pi i}\int\limits_{C}\frac{\gamma}{\Pi\left(\frac{\gamma}{2}\right)}\frac{e^{-v}dv}{v\left(\frac{v}{\beta}+\gamma\right)\Pi\left(\frac{v}{\beta}+\frac{\gamma}{2}\right)}\;.$$

In the last equation, C is a contour consisting of the axis Re v = 0 with the exception of the segment (-ir, +ir), where r is a fixed positive number, and a semicircle of radius r with its center at the point v = 0 going around the origin on the left. Considering that $|v| \ge r$ on the contour C and the asymptotic relation (16), we can write for β close to zero

$$U(1, \beta) \sim 1 - \frac{e^{-\gamma \beta}}{\Pi^2 \left(\frac{\gamma}{2}\right)} - \frac{\gamma \sqrt{\beta} e^{-\gamma \beta}}{2\pi \Pi \left(\frac{\gamma}{2}\right)} \int_C \frac{e^{-v} dv}{v \sqrt{v}}.$$

If L is a path which goes around the origin without intersecting the contour C and passes along the positive semiaxis Im v = 0, then

$$\int_{C} \frac{e^{-v} dv}{v \sqrt{v}} = -\int_{V} \frac{e^{-v} dv}{v \sqrt{v}} = 2\Gamma\left(-\frac{1}{2}\right) = -4 \sqrt{\pi}.$$

Consequently,

$$U(1, \beta) \sim 1 - \left(\frac{1}{\Pi\left(\frac{\gamma}{2}\right)} - \frac{2\gamma \sqrt{\beta}}{\sqrt{\pi}}\right) \frac{e^{-\gamma \beta}}{\Pi\left(\frac{\gamma}{2}\right)}.$$

NOTATION

 $C(\alpha, \beta)$ is the concentration of diffusing substance;

C₀ is the concentration of reagent at the entrance to the cathode channel of the transformer;

D is the diffusivity;

v is the convection rate;

v is the modulus of the convection rate;

h is the width of a band, a constant having the dimensions of length;

 $\gamma = vh/D$ is a positive dimensionless constant.

LITERATURE CITED

- 1. A. M. Danilevskii, "Current distribution in a cylindrical electrode," Trans. Scientific Research Institute for Mathematics and Mechanics, Kharkov State University [in Ukrainian], Vol. 13, No. 1 (1936).
- 2. M. L. Fish, Chemotron Instruments in Automation [in Russian], Tekhnika, Kiev (1967).